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What are the health-hazard associations 
in my data?

• Health outcome:  ER visits due to 
asthma among Alameda County, 
California residents enrolled in 
Medicaid and Kaiser Permanente; 
geocoded by residence address

• Hazard metric:  Annualized average 
vehicle counts within a 300-meter 
radius of subject’s residence
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The approach I learned in grad school:

• f(ER) is a function of the ER visit rate, such as 
the log or logit

• xexp is my exposure metric(s)

• xcov are my important covariates such as race 
or social class; these may not be of direct 
interest but their inclusion can profoundly 
influence the other parameters I calculate

( ) ∑+++= ixxERf ebbb covcovexpexp0
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The approach I learned in grad school:

• βexp are the parameters that I’m really 
interested in – they represent the 
associations between traffic and ER 
visits

• εi are my residuals – in order for my 
parameter estimates to be valid, these 
must be evenly distributed around zero 
and their mean must be constant 
throughout Alameda County

( ) ∑+++= ixxERf ebbb covcovexpexp0
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Traditional approach
• Advantages:

1. Understood by all professional audiences
2. Common understanding about how 

regression results behave under different 
circumstances

3. Many accessible software packages to 
choose from
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Traditional approach
• Biggest disadvantage:

– My assumption about the constant mean 
of the residuals (i.e. that all spatial 
structure is accounted for by xexp and xcov) 
is extremely tenuous)
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Asthma ER visits by children aged 0-17
Kaiser Permanente & Medi-Cal

Alameda County, 2001

All of this spatial 
structure must be 

explained by

(!)
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βexpxexp + b cov xcov
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One solution 

• Allows for the spatial structure of your 
residuals in your regression model

• Any residual geographic variation not 
accounted for by your parameters is 
represented in the residual structure 
(“residual variation”)

( ) ( )yxSpxxERf ,covcovexpexp0 +++= bbb
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What can we use for Sp(x,y)?
• Several options, although more have 

been developed for aggregated 
(regional) rather than point data

• Could be a description of how the 
covariance between neighboring points 
decreases with distance (Kriging)

• Another option is locally weighted 
estimation (loess) – the regression 
(usually linear or quadratic) of the 
outcome f(ER) as a function of the 
coordinates across the space
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Implications of including
non-parametric terms

• lo(x,y) will take on a different form depending 
on what you leave out of your model; in

lo(x,y) just depicts the spatial variation of f(ER)

• If lo(x,y) adapts to fit whatever is left out of the 
model, will βexp change depending on whether 
we include our covariates anymore?
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Enough talk already, 
let’s give it a shot!
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Estimating lo(x,y)
• At any given point, the nearest 

neighbors are included in the locally 
weighted estimation

• The fraction of all the data included as 
nearest neighbors is the span, which 
must be specified

• A small span gives a “bumpy” loess 
function, whereas a larger one will be 
smoother

• Still working out the bugs…
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Relative risk for ER visits, children 0-4
span=0.04

RR
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RR

Relative risk for ER visits, children 0-4
span=0.15
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RR

Relative risk for ER visits, children 0-4
span=0.30
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RR

Relative risk for ER visits, children 0-4
span=0.60
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How much smoothing is the “right 
amount?”

• This is really a question of how well the curve 
can predict the value of any given point

• Predictive power is maximized when Akaike’s 
Information Criterion (AIC) is minimized

• Is this the best approach for all environmental 
epidemiology questions?  All community 
stakeholder communications?

no smoothing total smoothing
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Finding the minimum AIC can be a 
chore!

• Large samples and/or large span 
values require heavy computing 
resources

• A random subset of the total sample 
may have a different span value 
associated with the AIC minimum
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Optimal span sizes for asthma ER 
visit data

1.00025,00064,82065+ years

0.14125,000111,23545-64 years

0.07725,000197,85618-44 years

1.00025,00078,4335-17 years

0.078(all)44,5260-4 years

Span with 
AICmin

Sample 
used

Available 
sampleAge group
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Does this change anything?
• Compared RR for ER visits among quartiles of 

exposure to our traffic metric (reference=1st 
quartile)

• Models:
– Traffic only
– Traffic + median family income of census tract + 

Medicaid status
– Traffic with loess smooth term
– Traffic + median family income of census tract + 

Medicaid status with loess smooth term
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Results
• When smooth term included, the 

presence or absence of covariates in 
the model becomes mostly irrelevant 
(for these data!)

• Inclusion of the smooth term may make 
the pollution parameters…
– More like the crude model
– More like the adjusted model
– Similar to neither model
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ER visits:  Ages 0-4
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ER visits:  Ages 5-17
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ER visits:  Ages 18-44
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ER visits:  Ages 45-64
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ER visits:  Ages 65+
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Lessons learned
• Working with spatially structured residuals is 

not too difficult
• Big step is selection of span value – need to 

explore appropriateness of AICmin criterion for 
Tracking purposes

• We need much more experience to 
understand:
– The relationship between sample size and the span 

value for AICmin 
– How and when to graphically represent represent 

smoothed residuals
– Under what circumstances it’s ok to leave 

covariates out of our regression models
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Lessons learned
• Often in Tracking we lack satisfactory covariate 

measures – if these can become irrelevant, this 
could be a big advantage

• Ability to visualize the residuals as maps may 
be a great tool on its own
– Potentially objective criterion to determine 

appropriate resolution for maps
– Ability to control for covariates to alter and view the 

resulting residual structure
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Thank you!

The CDC Environmental Public Health 
Tracking Program

Lance A. Waller, PhD*

*For invaluable comments and advice; any errors 
and misconceptions are my fault, not his!


